Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.17.24301374

ABSTRACT

Repeated mRNA SARS-CoV-2 vaccination has been associated with increases in the proportion of IgG4 in spike-specific antibody responses and concurrent reductions in Fc{gamma}-mediated effector functions that may limit control of viral infection. Here, we assessed anti-Spike total IgG, IgG1, IgG2, IgG3 and IgG4, and surrogate markers for antibody-dependent cellular phagocytosis (ADCP, Fc{gamma}RIIa binding), antibody-dependent cellular cytotoxicity (ADCC, Fc{gamma}RIIIa binding), and antibody-dependent complement deposition (ADCD, C1q binding) associated with repeated SARS-CoV-2 vaccination with NVX-CoV2373 (Novavax Inc., Gaithersburg, MD). The NVX-CoV2373 protein vaccine did not induce notable increases in spike-specific IgG4 or negatively impact surrogates for Fc{gamma} effector responses. Conversely, repeated NVX-CoV2373 vaccination uniquely enhanced IgG3 responses which are known to exhibit strong affinity for Fc{gamma}RIIIa and have previously been linked to potent neutralization of SARS-CoV-2. Subsequent investigations will help to understand the immunological diversity generated by different SARS-CoV-2 vaccine types and have the potential to reshape public health strategies.


Subject(s)
Immunologic Deficiency Syndromes , Virus Diseases , Drug-Related Side Effects and Adverse Reactions , Neural Tube Defects
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.28.23287848

ABSTRACT

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from: COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19 recovered vaccinees (convalescent, vaccinated) and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19 recovered vaccinees displayed improved antibody neutralizing activity, Fc{gamma}R engagement and IgA compared to COVID-19 uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma. IgG, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased pre-existing vaccine-induced immunity to the ancestral strain. Salivary antibodies delayed initiation of boosting following breakthrough COVID-19 infection, especially Omicron BA.2, however, rose rapidly thereafter. Our data highlight how pre-existing immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.07.22277364

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a formidable challenge to worldwide public health. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. We comprehensively investigated the impact of RBD mutations, including 6 variants of concern (VOC) or interest (Alpha, Beta, Gamma, Delta, Kappa and Omicron) and 33 common point mutations, on IgG recognition, Fc{gamma}R-engagement, and ACE2-binding inhibition in plasma from BNT162b2-vaccine recipients (two-weeks following second dose) and mild-to-moderate COVID-19 convalescent subjects using our custom bead-based 39-plex array. We observed that IgG-recognition and Fc{gamma}R-binding antibodies were most profoundly decreased against Beta and Omicron RBDs, as well as point mutations G446S, found in Omicron, and N501T, a key mutation found in animal adapted SARS-CoV-2 viruses. Measurement of RBD-ACE2 binding affinity via Biolayer Interferometry showed all VOC RBDs have enhanced affinity to human ACE2. Furthermore we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695), K26R (rs4646116) and S19P (rs73635825), have altered binding kinetics to the RBD of VOCs potentially affecting virus-host interaction and thereby host susceptibility.


Subject(s)
Coronavirus Infections , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.02.21261479

ABSTRACT

ObjectivesSARS-CoV-2 can be transmitted by aerosols and the ocular surface may be an important route of transmission. Little is known about protective antibody responses to SARS-CoV-2 in tears after infection or vaccination. We analysed SARS-CoV-2 specific IgG and IgA responses in human tears after either COVID-19 infection or vaccination. MethodsWe recruited 16 subjects with COVID-19 infection an average of 7 months previously and 15 subjects before and 2 weeks after Comirnaty (Pfizer-BioNtech) vaccination. Plasma, saliva and basal tears were collected. Pre-pandemic plasma, saliva and basal tears from 11 individuals were included as healthy controls. Antibody responses to 5 SARS-CoV-2 antigens were measured via multiplex. ResultsIgG antibodies to Spike and Nucleoprotein were detected in tears, saliva and plasma from subjects with prior SARS-CoV-2 infection in comparison to uninfected controls. While RBD-specific antibodies were detected in plasma, minimal RBD-specific antibodies were detected in tears and saliva. In contrast, high levels of IgG antibodies to Spike and RBD, but not Nucleoprotein, were induced in tears, saliva and plasma of subjects receiving 2 doses of the Comirnaty vaccine. Increased levels of IgA1 and IgA2 antibodies to SARS-CoV-2 antigens were detected in plasma following infection or vaccination, but were unchanged in tears and saliva. ConclusionBoth infection and vaccination induce SARS-CoV-2-specific IgG antibodies in tears. RBD-specific IgG antibodies in tears were induced by vaccination but were not present 7 months post-infection. This suggests neutralising antibodies may be low in the tears late following infection.


Subject(s)
COVID-19 , Infections
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.26.21256092

ABSTRACT

Current SARS-CoV-2 vaccines are losing efficacy against emerging variants and may not protect against future novel coronavirus outbreaks, emphasizing the need for more broadly protective vaccines. To inform the development of a pan-coronavirus vaccine, we investigated the presence and specificity of cross-reactive antibodies against the spike (S) proteins of human coronaviruses (hCoV) after SARS-CoV-2 infection and vaccination. We found an 11 to 123-fold increase in antibodies binding to SARS-CoV and MERS-CoV as well as a 2 to 4-fold difference in antibodies binding to seasonal hCoVs in COVID-19 convalescent sera compared to pre-pandemic healthy donors, with the S2 subdomain of the S protein being the main target for cross-reactivity. In addition, we detected cross-reactive antibodies to all hCoV S proteins after SARS-CoV-2 S protein immunization in macaques, with higher responses for hCoV more closely related to SARS-CoV-2. These findings support the feasibility of and provide guidance for development of a pan-coronavirus vaccine.


Subject(s)
COVID-19 , Poult Enteritis Mortality Syndrome
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.09.290247

ABSTRACT

The rSWeeP package is an R implementation of the SWeeP model, designed to handle Big Data. rSweeP meets to the growing demand for efficient methods of heuristic representation in the field of Bioinformatics, on platforms accessible to the entire scientific community. We explored the implementation of rSWeeP using a dataset containing 31,386 viral proteomes, performing phylogenetic and principal component analysis. As a case study we analyze the viral strains closest to the SARS-CoV, responsible for the current pandemic of COVID-19, confirming that rSWeeP can accurately classify organisms taxonomically. rSWeeP package is freely available at https://bioconductor.org/packages/ release/bioc/html/rSWeeP.html.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.10.288548

ABSTRACT

SARS-CoV-2, the agent responsible for COVID-19 has been shown to infect a number of species. The role of domestic livestock and the risk associated for humans in close contact remains unknown for many production animals. Determination of the susceptibility of pigs to SARS-CoV-2 is critical towards a One Health approach to manage the potential risk of zoonotic transmission. Here, we show pigs are susceptible to SARS-CoV-2 following oronasal inoculation. Viral RNA was detected in group oral fluids and nasal wash from at least two animals while live virus was isolated from a pig. Further, antibodies could be detected in two animals at 11 and 13 days post infection, while oral fluid samples at 6 days post inoculation indicated the presence of secreted antibodies. These data highlight the need for additional livestock assessment to determine the potential role domestic animals may contribute towards the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Infections
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20191205

ABSTRACT

The durability of infection-induced SARS-CoV-2 immunity has major implications for public health mitigation and vaccine development. Animal studies and the scarcity of confirmed re-infection suggests immune protection is likely, although the durability of this protection is debated. Lasting immunity following acute viral infection requires maintenance of both serum antibody and antigen-specific memory B and T lymphocytes and is notoriously pathogen specific, ranging from life-long for smallpox or measles4, to highly transient for common cold coronaviruses (CCC). Neutralising antibody responses are a likely correlate of protective immunity and exclusively recognise the viral spike (S) protein, predominantly targeting the receptor binding domain (RBD) within the S1 sub-domain. Multiple reports describe waning of S-specific antibodies in the first 2-3 months following infection. However, extrapolation of early linear trends in decay might be overly pessimistic, with several groups reporting that serum neutralisation is stable over time in a proportion of convalescent subjects. While SARS-CoV-2 specific B and T cell responses are readily induced by infection, the longitudinal dynamics of these key memory populations remains poorly resolved. Here we comprehensively profiled antibody, B and T cell dynamics over time in a cohort recovered from mild-moderate COVID-19. We find that binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection, as expected, with a similar decline in S-specific CD4+ and circulating T follicular helper (cTFH) frequencies. In contrast, S-specific IgG+ memory B cells (MBC) consistently accumulate over time, eventually comprising a significant fraction of circulating MBC. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent subjects to 74 days, with probable additive protection from B and T cells. Overall, our study suggests SARS-CoV-2 immunity after infection is likely t 66 o be transiently protective at a population level. SARS-CoV-2 vaccines may require greater immunogenicity and durability than natural infection to drive long-term protection.


Subject(s)
Virus Diseases , Lymphoma, B-Cell , COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.11.20098459

ABSTRACT

SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fc{gamma} receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fc{gamma} receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL